top of page

43. Wu, T.H.*, Cheng, S.L., Liao, S.C. “Silver Nanoparticle−Decorated MnO2 for Promoted Mn4+/Mn2+ Redox Reaction in Aqueous Zn−MnO2 Batteries”, Electrochim. Acta, 490 (2024), 144290.

42. Wu, T.H.*, Qiu, Z.T., Hsieh, C.N. “Obtaining Ni-P electrocatalyst in minutes via electroless plating on carbon nanotubes decorated substrate for alkaline urea electrolysis”, Appl. Surf. Sci., 645 (2024), 158831.

41. Wu, T.H.*, Chen, Jheng-An, Su, J.H., Ting, Y.H. “Decorating Carbon Quantum Dots onto VO2 Nanorods to Boost Electron and Ion Transport Kinetics for High−Performance Zinc−Ion Batteries”, J. Energy Storage, 74A (2023), 190340.

40. Wu, T.H.*, Chen, Jheng-An, Su, J.H., “Interface Engineering of Heterostructured Vanadium Oxides for Enhanced Energy Storage in Zinc-Ion Batteries”, J. Colloid Interface Sci., 654A (2024), 308-316.

39. Wu, T.H.*, Liu, Y.S., Hong, C.T., Hou, B.W., “Binary and nanostructured Ni-Mn perovskite fluorides as efficient electrocatalysts for urea oxidation reaction”, J. Colloid Interface Sci., 653B (2024), 1094-1102.


38. Liu, B.T.,* Huang, Y.S., Wu, T.H., Wang, S.H., Su, H.S., Chen, I.R.Lin, Y.Q., “A facile strategy for highly efficient perovskite crystals fabricated in a high moisture environment via solvent engineering process”, J. Taiwan Inst. Chem. Eng., 151 (2023), 105107.

37. Wu, T.H.*, Su, J.H., “Controlling Crystal Structures of Vanadium Oxides via pH Regulation and Decoupling Crystallographic Perspective on Zinc Storage Behaviors”, Acta Mater., 245 (2023), 118663.

36. Wu, T.H.*, Lin, Y.Q., Huang, J.X., “Yttrium Preintercalated Layered Manganese Oxide as a Durable Cathode for Aqueous Zinc−Ion Batteries”, Nanoscale, 15 (2023), 1869–1879.

35. Anuratha, K.S., Rinawati, M., Wu, T.H.*, Yeh, M.H.*, Lin, J.Y.*, “Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution”, Nanomaterials, 12 (2022), 2970.

34. Wu, T.H.*, Ni, K.Y., Liu, B.T., Wang, S.H., “Activating ZnV2O4 by Electrochemical Oxidation Strategy for Enhanced Energy Storage in Zinc−Ion Batteries”, ACS Appl. Energy Mater., 5 (2022), 10196–10206.


33. Wu, T.H.*, Yen, L.H., Lin, Y.Q., “Defect regulated spinel Mn3O4 obtained by glycerol–assisted method for high–energy–density aqueous zinc–ion batteries”, J. Colloid Interface Sci., 625 (2022), 354-362.

32. Wu, T.H.*, Zhan, J.J., Hou, B.W., Qiu, Z.T., “One‑step synthesis of NiS2/rGO composite for efficient electrocatalytic urea oxidation”, MRS Energy Sustain., 9 (2022), 324–331.

31. Fang, K.L.,Wu, T.H.*, Hou, B.W., Lin, H.R., “Green synthesis of Ni3S2 nanoparticles from a nontoxic sulfur source for urea electrolysis with high catalytic activity”, Electrochim. Acta, 421 (2022), 140511.


30. Wu, T.H.*, Huang, C.C.; Cheng, S.L.; Lin, C.C.*, “Expanded spinel ZnxMn2O4 induced by electrochemical activation of glucose − mediated manganese oxide for stable cycle performance in zinc−ion batteries”, J. Colloid Interface Sci., 617 (2022), 274-283.

29. Wu, T.H.*, Liang, W.Y., Lin, Y.Q., “Facile Synthesis of Cu−intercalated MnO2 Nanoflakes Cathode for Enhanced Energy Storage in Zinc−Ion Batteries”, J. Taiwan Inst. Chem. Eng., 131 (2022), 104172.

28. Wu, T.H.*, Li, Y.M.; Ni, K.Y.; Li, T.K.; Lin, W.S., “Vanadium Oxides Obtained by Chimie Douce Reactions: The Influences of Transition Metal Species on Crystal Structures and Electrochemical Behaviors in Zinc−Ion Batteries”, J. Colloid Interface Sci., 608 (2022), 3121-3129.

27. Wu, T.H., Lin, Y.Q.,Althouse, Z.; Liu, N.*, “Dissolution–Redeposition Mechanism of MnO2 Cathode in Aqueous Zinc–Ion Batteries”, ACS Appl. Energy Mater., 4 (2021), 12267–12274.

26. Wu, T.H.*, Lin, W.S., “Enhanced Reversibility of Vanadium Oxide Cathode by Diminished Surface Precipitation in Zn(TFSI)2 Aqueous Electrolyte”, Electrochim. Acta, 399 (2021), 139432.

25. Wu, T.H.*, Lin, W.S., “Boosting Proton Storage in Layered Vanadium Oxides for Aqueous Zinc−Ion Batteries”, Electrochim. Acta, 394 (2021), 139134.

24. Wu, T.H.*, Chen, J.A., Lin, W.S., Liang, W.Y., “La0.14V2O5/Reduced Graphene Oxide Composite for Aqueous Zinc−Ion Batteries with Long Cycle Life”, J. Electrochem. Soc., 168 (2021), 080527.

23. Wu, T.H.*, Liang, W.Y., “Reduced Intercalation Energy Barrier by Rich Structural Water in Spinel ZnMn2O4 for High−Rate Zinc−Ion Batteries”, ACS Appl. Mater. Interfaces, 13 (2021), 23822-23832. 

22. Wu, T.H.*, Hou, B.W., “Superior Catalytic Activity of α−Ni(OH)2 for Urea Electrolysis”, Catal. Sci. Technol., 11 (2021), 4294-4300. 

21. Kuo, M., Cheng, T.C., Ye, H.K., Wang, T.L., Wu, T.H., Kuo, C.C., Lee, R.H.*, “Polyaniline/Ag2S–CdS Nanocomposites as Efficient Electrocatalysts for Triiodide Reduction in Dye-Sensitized Solar Cells”, Catalysts, 11 (2021), 507. 

20. Wu, T.H.*, Lin, Y.C., Hou, B.W., Liang, W.Y., “Nanostructured β−NiS Catalyst for Enhanced and Stable Electro−oxidation of Urea”, Catalysts, 10 (2020), 1280. 
 
19.  Wu, T.H., Scivetti, I.*, Chen, J.C., Wang, J.A., Teobaldi, G., Hu, C.C.*, Hardwick, L.J.*, “Quantitative Resolution of Complex Stoichiometric Changes during Electrochemical Cycling by Density Functional Theory-Assisted Electrochemical Quartz Crystal Microbalance”, ACS Appl. Energy Mater., 3 (2020), 3347-3357. 
 
18.  Sancho, H., Zhang, Y., Liu, L., Barevadia, V. G., Wu, S., Zhang, Y., Huang, P.W., Zhang, Y., Wu, T.H., You, W., Liu, N.*, “NiCo2Se4 Nanowires as a High-Performance Bifunctional Oxygen Electrocatalyst”, J. Electrochem. Soc., 167 (2020), 056503.

17.  Yang, H., Zhang, Y., Tennenbaum, M., Althouse, Z., Ma, Y., He, Y., Wu, Y., Wu, T.H., Mathur, A., Chen, P., Huang, Y., Fernandez-Nieves, A., Kohl, P.*, Liu, N.*, “Polypropylene Carbonate-Based Adaptive Buffer Layer for Stable Interfaces of Solid Polymer Lithium Metal Batteries”, ACS Appl. Mater. Interfaces, 11 (2019), 27906-27912.

16.  Wu, T.H., Zhang, Y., Althouse, Z.D., Liu, N.*, “Nanoscale Design of Zinc Anodes for High-Energy Aqueous Rechargeable Batteries”, Mater. Today Nano, 9 (2019), 100032. 
 
15.  Li, J.M., Hu, C.C.*, Wu, T.H., Hsu, Y.J., “Electroless deposition of RuO2-based nanoparticles for energy conversion applications”, RSC Advances, 9 (2019), 4239–4245.
 
14.  Huang, Y., Yang, H., Zhang, Y., Zhang, Y., Wu, Y., Tian, M., Chen, P., Trout, R., Ma, Y., Wu, T.H., Wu, Y.*, Liu, N.*, “A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4”, J. Mater. Chem. A, 7 (2019), 11250–11256. 
 
13.  Chen, P., Wu, Y., Zhang, Y., Wu, T.H., Ma, Y., Pelkowski, C., Yang, H., Zhang, Y., Hu, X., Liu, N.*, “A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries”, J. Mater. Chem. A, 6 (2018), 21933–21940. 
 
12.  Adomkevicius, A., Cabo–Fernandez, L., Wu, T.H., Ou, T.M., Chen, M.G., Andreev, Y.*, Hu, C.C.*, Hardwick, L.J.*, “Na0.35MnO2 as an ionic conductor with randomly distributed nano–sized layers”, J. Mater. Chem. A, 5 (2017), 10021–10026.
 
11.  Chien, H.C., Wu, T.H., Rajkumar, M., Hu, C.C.*, “Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors”, Electrochim. Acta, 205 (2016), 1–7.
 
10.  Lee, J.S.M., Wu, T.H., Alston, B.M., Briggs, M.E., Hasell, T., Hu, C.C., Cooper, A.I.*, “Porosity−Engineered Carbons for Supercapacitive Energy Storage Using Conjugated Microporous Polymer Precursors”, J. Mater. Chem. A, 4 (2016), 7665–7673.
 
9.  Rajkumar, M., Hsu, C.T., Wu, T.H., Chen, M.G., Hu, C.C.*, “Advanced materials for aqueous supercapacitors in the asymmetric design”, Prog. Nat. Sci., 25 (2015), 527–544.
 
8.  Wu, T.H., Hesp, D., Dhanak, V.R., Collins, C., Braga, F., Hardwick, L.J.*, Hu, C.C.*, “Charge storage mechanism of activated manganese oxide composites for pseudocapacitors”, J. Mater. Chem. A, 3 (2015), 12786–12795.
 
7.  Peng, Y.J., Wu, T.H., Hsu, C.T., Li, S.M., Chen, M.G., Hu, C.C.*, “Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors”, J. Power Sources, 272 (2014), 970–978.
 
6.  Hsu, C.T., Hu, C.C.*, Wu, T.H., Chen, J.C., Rajkumar, M., “How the electrochemical reversibility of a battery– type material affects the charge balance and performances of asymmetric supercapacitors”, Electrochim. Acta, 146 (2014), 759–768.
 
5.  Liu, C.L., Hu, C.C.*, Wu, S.H., Wu, T.H., “Electron Transfer Number Control of the Oxygen Reduction Reaction on Nitrogen–Doped Reduced Graphene Oxides Using Experimental Design Strategies”, J. Electrochem. Soc., 160 (2013), H547–H552.

4.  Wu, T.H., Hsu, C.T., Hu, C.C.*, Hardwick, L.J.*, “Important parameters affecting the cell voltage of aqueous electrical double–layer capacitors”, J. Power Sources, 242 (2013), 289–298.
 
3.  Wu, T.H., Chu, Y.H., Hu, C.C.*, Hardwick, L.J.*, “Criteria appointing the highest acceptable cell voltage of asymmetric supercapacitors”, Electrochem. Commun., 27 (2013), 81–84.
 
2.  Li, J.M., Chang, K.H., Wu, T.H., Hu, C.C.*, “Microwave–assisted hydrothermal synthesis of vanadium oxides for Li–ion supercapacitors: The influences of Li–ion doping and crystallinity on the capacitive performances”, J. Power Sources, 224 (2013), 59–65.
 
1. Hu, C.C.*, Wang, C.W., Wu, T.H., Chang, K.H., “Anodic composite deposition of hydrous RuO2–TiO2 nanocomposites for electrochemical capacitors”, Electrochim. Acta, 85 (2012), 90–98.

bottom of page